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MATHEMATICAL MODELS OF THE MASSACHUSETTS BAY

ABSTRACT — PART 1

FINITE ELEMENT MODELING OF TWO-DIMENSIONAL

HYDRODYNAMIC CIRCULATION IN SHALLOW WATER MASSES
BY

JEROME J. CONNOR
and

JOHN D. WANG

The vertically integrated conservation of mass and momentum
equations for shallow water bodies are reviewed. The equations used
in this study are based on only two assumptions: hydrostatic pressure
and squares of surface elevation gradients negligible with respect to
unity. The finite element method is applied to reduce the governing
equations to a system of ordinary non-linear differential equations im
time for which two different numerical integration schemes are described.
Model results are compared with analytical solutioms. Also, numerical
predictions of the tidal respomse for Massachusetts Bay are presented.
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CHAPTER 1

INTRODUCTION

Mathematical modelling of circulation and dispersion in water
bodies has developed rapidly during the past decade. The major impetus
has been the concern for the environment which has necessitated mere
detailed studies of water quality and especially the development of
transient predictive models.

This study 1s restricted to the development and evaluation of
finite element models for predicting the transient response of water
bodies due to rtidal and wind excitation. Three dimensional solutions
are most desirable but the uncertainly of boundary conditions and in
the magnitudes of the eddy viscosities and turbulent diffusion
coefficients does not justify the effort at this time. Therefore, this
study is further restricted to vertically well-mixed two dimensional
flow. Irregularity of the boundary geometry and depth are allowed for
but the velocities are assumed to be approximately uniform over the
depth.

There are a number of recent reports [1-7] describing finite
difference models for circulation and dispersion in well-mixed estuaries
and coastal waters. The proposed models by Leendertse et al.[3] and
Abbot et al [7] appear to be well documented and have extensive
supporting software for data generation and plotting.

Finite difference models employ rectangular grids and one has
to resort to approximacing an irregular boundary with orthogonal
segments. This requires a small mesh spacing throughout the domain.

Approximate techniques for expanding the mesh in the interier have
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been employed but they can introduce additional numerical difficulties.
The finite element method was first applied to fluild flow by
Martin [8] who treated two-dimensional steady potential flow. It
has since been extended to Navier-Stokes flow [9], lake circulation
(10,11], and long wave propagation (12). The method has proven to be
particularly convenient for problems involving irregular boundaries
since the mesh can be chosen to "fit" the boundary. However,
relatively little experience with finite element transient solutions
of hyperbolic equations has been accumulated in contrast to finite
difference models where stability has been studied extensively [15,16].
In what follows, a consistent derivation of the vertically
averaged equations for long wave propagation is presented. The
formulation is sufficiently different from existing formulations
(Pritchard, Ref. 2) to warrent its inclusion here. Next, the method
of weighted residuals [14] is applied to generate a 'quasi' variational
statement which is the basis for the finite element discretization.
Three numerical integration schemes are evaluated for one and two-
dimensional test problems discretized with first order triangular
elements. The scheme is also applied to Massachusetts Bay, a fairly
complex coastal area, and a solution-strategy for "adjusting" the

bottom friction is discussed.
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CHAPTER 2
BASTC HYDRODYNAMIC EQUATIONS

The 3-dimensional forms of the ensemble averaged continuity and
momentum equations comstitute the basis for the present formulation.

They are

S ow o) o) = e

(pu) . + (Quz),x + (puv) o+ (puw)

- + + +
Pty p’x Txx,x Tyx,y sz.z (1)

(ov)  + (o) |+ (ov)) o+ (pw)

+

= - pfu - p’y + Txy'x + Tyy’y sz,z

where u, v, w are the averaged velocities, e is a source of mass inflow
per unit veolume, T are the sums of viscous and Reynclds stresses, 0

is mass density and f is the Coriolis parameter. By definition, the
stress components are symmetrical with respect to the subscripts, i.e.,
Txy = TYX' etc.

A set of 2-dimensional equations is obtained by imtegrating (1)
over the total depth and applying Leibnitz's rule. The notation and the
applied surface forces are shown in Figure 1. We assume the surface
slope is small and neglect (n’x)z. (n’y)2 with respect t; unity. With

this approximation, the surface force-interior stress relations for the

upper surface reduce to
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y (north)

z (vertical)

2 da = dxdy

Figure 1. Geometrical and surface force notation.
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s s
+ = (= - + T - +
T ¥ NP ] n’x( PH L) T My Tyx rlez#n
s s
T, t =\ -n_ Tt .- (-p+rT + 1 2
Y n.Yp | X XY n.Y P YY) zy|z=n (2)
] s s
- + = - =+ - -—
P+ n,x Tx n,y Ty P Tzz n,x sz n,y Tyziz=n

where t° are the applied tangential wind stresses and ps is the external
pressure. A similar set applies for the bottom surface.
Leibnitz's rule defines partial differentiation of an integral

having variable limits. Its form for x differentiation is

) (72 %2 3¢ 3, 98,
- fdz = = dz + f — - f = (3)
ox ox g, 0K 8; ax
g g
Using the general form of {3) and applying the kinematic relation
- D& _ 3¢ 3L 3z
v z= Dt Ot tu 3x T 3y )

at £ =nand £ = ~h, assuming the density is constant over depth results

in the following "integrated" equations:

] 3 3

g-t—(pﬁ) plc el M 3y 4y © 91
n n

? 8 2 3

It I + 5;(0 u-dz) + ay(D uvdz)
h -h

= s b g dan . b dh
- fqy T * Tx e x e x

n n

. ,
-p + $ = d
(-p Txx)dz 5y Tyx z (5)
=h =h

T
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S

n n
3 g ] 2
3t qy + A (p J-huvdz) + 3y (p [ v dz

-h
b s an b 3h
=-fq +1°+ 10 +p° =4 p —
LTy Ty TP TP Yy
3 n 3 n
+ — T . dz + — (=p + T__)dz
. 9x Xy dy vy
~h -h
where
H=h+nmn
n
q = p N udz
Jn
q_ =P vdz
7 -h

and Gy is the distributed mass inflow per unit area.
To integrate the nonlinear advective terms we express the velocity

compounents as

u = G(xﬂ“t) + u'(XIY!z!t) )
- (6)
v = v{x,y,t) + V'(xﬂ"sz:t)
where E, v denote the vertically averaged velocities and u', v' represent

the vertical deviations, By defimition,

q, = ol
dy = PV )
n n
I u'dz = I vidz = 0
-h =h

Introducing (6) in (5) and grouping terms in a form similar to the 3-
dimensional momentum equations, we write the "integrated" momentum

equations as
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2 3

9

§E(DH) + ax Ix + y qy =4

3 2 - 8_,= = * 4 3 - 2

3t % t Bx(uqx) * By(uqy) - qu * Bx + Bx(Fxx Fp) * oy FYK

(8)

3 3= J = 3 d

- + — = ol _— -

3t ly Bxcvqx) ¥ By(vqy) fo + By T % ny * 3y(FyY FP)

where B:, B* contain the surface and bottom stress terms, Fp is the pres-

sure force resultant and Fx F_, Fyy are "equivalent" internal stress

x* “xy

resultants due to turbulent and dispersive momentum flux.
n
Fp= J pdz
n 2
Fx = I (1, = Plu')")dz (9)
n 2
Foy = I (Tyy - p(v')")dz

n
= - — | . |
ny Fyx J-h (Txy pu'v')dz

We approximate the flux terms with

3
Fax ™ Bxx 5x %
= 2
F_=¢ q (10)

2 3
= = bl +——
Fyx ny Exy (By YW T qy)
One can interpret the €'s as either equivalent Fickian diffugion
coefficients or generalized eddy viscosities. In (10) we have
allowed for orthotropic behavior. For isotropic flow, (10) applies

for arbitrary orientation of x, y, and therefore one has
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€ =g =2¢
xX vy
(11)
£ =
Xy
Next, we assume the pressure variation with z is hydrostatic,
p = mg(n-z) + p° a2
and the bottom shear is predicted by a quadratic relation,
C
b £ 2 2.1/2
= - +
Tx 2 qx(qx qy)
PH (13)
c
b f 2 2,172
T, = - a,(q +q)
y pHZ y Ix y
where Cf is a friction factor.
The corresponding forces are
n .
F =J pdz=pSH+Qg-Hz
P ~h
R 2h (14)
Bx Tx + Tx +p o +pg H T
s b s oH dh
B* =10 + 1 +p =— + H—
y - Ty Ty TR gy T e NGy
Lastly, we express the mass density as
+
P, + dp (15)

where Po 1s constant. The incremental density &p is small in comparison
to po for circulation in coastal waters and estuaries. Therefore,
Wwe set p = p0 except for the pressure force terms. This is the
Boussinesq  approximation,

To complete the formulation, we need to establish the boundary
conditions. The total boundary, S, consists of flux segments, Sf, and

ocean segments, So’ as shown in Figure 2. We refer the flux and
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n {exterior
normal)

an’qn

X interior
domain

*——F .dx
yx

F -F }d
( vy p) X

Figure 2. Boundary notation.
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boundary force measures to the local reference frame defined by
the exterior normal, n, and the tangential direction, s, where n * s

has the same sense as X > y.

Mass flux is a vector quantity and its components transform

according to

¥a]
[l

n
n J;h pu, dz = op,d, ®aydy

n
9 T I;h pug dz = = %nydx + Clnqu (16)
%y = cos(n,x) any = cos(n,y)

Consistent with interpreting the momentum flux due to nonuniform
velocity distribution through the depth as equivalent internal force

resultants, we write

F = (F_-F)Y+o0o F
nx - XX

nx P ny yx
1mn
F _=oa F_ _+a F ~-F
ny nx XYy ny ( ¥y P)
and then transform according to (16), obtaining
F_=-F +F°
nn p nn
FnS=Fe
ns (18)
FC = az F_+ az F_+ 20 o F
nn nx XX ny vy nxX ny xy
F¢ = (a2 -a? )F (F_-F )

+a o
ns nx ny’ xy nx ny - vy XX
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On a land boundary (assuming no tidal flats), the flux components

are prescribed.

=q =0 on § {(19)

On an ocean boundary, the normal and tangential boundary forces

are prescribed.

= F
nn nn

. on SO (20)

F F
ns ns
On flux boundaries other than land such as at river entrances the
normal flux is specified equal to the river mass flow.
q =g

n river

on Sriver Q2n

9, = 0

When the eddy viscosities are neglected, F& = 0, and we cannot
prescribe the tangential flux or tangential boundary force. The

boundary conditions reduce to

q =q ons (22)

and

F =F ons§ (23)

In the present model application,equation (23) with an = - Fp is

used although eddy viscosities are assumed non zero in the interior.
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CHAPTER 3
VARIATIONAL STATEMENT

The governing equations are (8) and the appropriate boundary
conditions. In what follows, we apply Galerkin's method [14]to establish
the variational statements which are the basis for the finite element
method.

Let AH, Aqx, Aqy represent weighting functions., We weight the
continuity equation with respect to AH, the momentum equations with
respect to Agq, integrate over the domain, and require the residuals to
vanish. We a;so weight the force boundary conditions on So' The resulting

expressions are

- q; }AHdA = 0O (24)

.”' {(DOH),t + qx,x + qy’y
A

and

- A Fy - - -
I 40y, (FF) = 55 B = B Aada = 0

ax
-8 .3 F) - -
[y ¢ ~ 5 ey =5y FyyFp) B} Aq dA =0
A (25)
sf CF e Oy PP+ F Y Aqds =0

f {(-F_+a F _+a_(F _-F)}Aq dS=0
s ny mX Xy ny yy P y

Here we have included the Coriolis and nonlinear terms in B.
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B, = BY+ fq - %(qu) - %; (qu)
(26)

B
y

1]

‘a - 8 -
x - -2 -2
By qu ax (vqx) oy (qu)

Applying Gauss's theorem to eliminate the derivatives of the force
terms in the momentum equations and combining with the boundary equations

leads to the desired form:

i’f' {(qx’t - B) Aq_ + (FXX—FP)(AqX)’x + Fyx(Aqx)’y} dA

- [ F__ 8qds =0

5
o

{f Hag o = By) Aay + F o (Bap) o+ (FYY_FP)(AqY)aY} aa

- F AgdS =0 27
Sf ay 2y (27)
8]

We have required the flux weighting functions to vanish on Sf,

Aq_= Aqy =0 on S (28)

and consequently the boundary integrals on Sf drop out of (27).
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CHAPTER 4
FINITE ELEMENT MODEL

The continuity equation (24) and modified momentum equations
(27,28) are the starting point for the finite element method. We
visualize the domain to consist of subdomains (elements) and take as
variables the values of 9. qy, H at the points (nodes) defiming the
discretization, This is illustrated in Figure 3. The distribution
of a dependent variable over an elemental domain is expressed in terms
of the values of the variable at nodes contained in the element domain
and interpolation functions. In this way, the equations are transformed
to a set of algebraic equations relating the discrete variables. In
the present formulation the simplest elements,viz, triangular with
linear interpolation functions,were chosen. However, more complex

elements and expansion functions will be implemented in future modeling.

We define the following notation:
940 qyi’Hi = values at node i

s,

(e) H(e)
y >~

g are matrices containing the nodal variables
for an element

(29)
N = number of nodes

g = {qxl’ qyl’ qu""’qu} = system flux matrix (2N nodal values)
H = {Hl, H2""'HN} = gystem elevation matrix (N modal values)
For example, H(e) = {Hnl’ Hn2’ HnS} for the triangular element shown

in Figure 3. The expansions are written as
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nodes

Interior domain discretized with finite elements

element relative

element n numbering scheme

Figure 3. Finite element geometric discretization.

Ty, 0y, Dy are the actual node numbers
for the nodes in the domain of element n.
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q =0 q® (30)

where f is a row matrix. We are considering 3 variables per node.

One can generalize the approach and allow for a variable number of un-
knowns per node, i.e., different expansions for flux and elevation,
but we prefer to work with the simplest scheme.

In the Galerkin method, one takes the weighting functions
identical to the coordinate functions. Since the finite element method
employs local functions, the weighting function for a particular
nodal variable is finite (non-zero) only for those elements incident
on the node. Rather than treat individual nodes, it is more convenient
to evaluate element residuals and then superimpose the element con-
tributions at the nodes.

Taking the complete set of weighting functions for an element as

da, = @ 8q
, (&) (3D
Aq =& A
1y = 2 %%y

A = o Au‘®)

and substituting in (24), (27) results in the following element

residuals:
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q(e)
8g{®HT o E— + B2

==}
|

el

(e)
(A (e))T(M(e) ____L + P(e)) (32)

-+

an(®)
Bt

(&H(e)) (M(E) + P(e))

+

where

{e) - If ¢T¢ dA
A(e)~ N

<4

(e) _
P50 =[] I- @ B+ @ « P Fp) * ¢ y Fry) A

(e)
'I' -—
- ¢ F_ds
S(e)
0O
(33)
(E) = -9 B, + of F_+ ¢ (F _-F )] dA

(E) "'!x xy ~ W p

- T F s

(e~ W

{e) _ 1 T
B o f] $a ey, e o
(e
The forces and flux derivatives in (33) are evaluated using (30) and
the force expressions (10), (14), (26).
The total residual must vanish for arbitrary ﬁqxi’ &qyi, 4AH

i
(i=1,2,...N). Then,
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R = 7 R| ., =0 (34)
total elements Iel
for arbitrary AQ, AH.

We write the expanded form of (34) as

_ T, 3 T, 3
Rleoral = B gy @+ B) + (M) (o7 H+ P (33)

and it follows that
My+P =0
(36)
Emh}'l+1:h=9
Finally, we introduce the boundary conditions by modifying the rows
and columns of @ corresponding to the prescribed variables and in-

corporating the prescribed terms in P. To minimize notation prolifera-

tion, we assume (36) represent the final constrained equations.
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CHAPTER 3
NUMERICAL INTEGRATION SCHEMES

Efficient stable numerical integration schemes are essential since
a typical problem will involve several hundred node points and inte-~
grations over at least one tidal cycle. Complex multi-step methods,
although more accurate, require considerably more computation time and
storage. Therefore, we have concentrated in this study on investigating
the stability and accuracy of relatively simple implicit schemes.

Explicit stability criteria for finite element formulations such
as (36) have not yet been developed. The difficulty is due to the
arbitrariness of the coefficient matrices (i.e., the elements are
confined to a zone adjacent to the diagonal but their magnitudes may
be irregular) and also the skew symmetry of the Coriolis and surface
elevation terms. One generally has to resort to approximate stability
measures based on norms. We make no attempt here to resolve this
problem since our primary objective is to evaluate the performance of
various schemes.

The simplest scheme is the trapezoidal rule., Its one dimensional

form is

dy _
at f(y,t)
At
yn+1 - yn T2 (fn+1 + fn) + EAL
(1)
1 2 1a%s
E=qpee) " €5 o
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Iteration is required since the forcing terms in {36) are non-

linear. We include a relaxation factor to accelerate convergence and

evaluate the terms in the following order:

_ A 3-1
SRS R KL

ot T P

j - * - j"l
B =6 B+ Q-6 H

and

-1 _ 3 -1
I:jn-!-l P 410 ‘Ilﬂ' tot1)
At .. j-1
MQr - Q) = el )

-1
g-!-l =6 o+ Q- eq)gjnﬂ

(38)

The mass matrices are factored initially and the iteratiom and

time stepping consists of successive forward and backward substitutions.

Convergence is defined by the percentage change in the Euclidian norms

for the surface elevation and mass flux vectors.

i=1

N
g 2
[ L @l Hn+1)i]1/2

<
‘f adtly? = %n
=1 ntl’ i
2N
M |2
[121 Q1 ™ Qs ]1/2
2N < EQ
j41.2
I @)

i=1

(39)
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where N is the total number of nodes, and €h, £ are the specified

Q

tolerances.
The second method examined is the third order predictor-corrector

iterative scheme,

4y .

Predictor:

1
fn+1 = 3fn - 3fn-l + fn—2

Corrector: (40)

*_ = At 3-1 -
Y oY, sy e - f ) +E A

j - * - j-l
yn+1 Oy* + (1 ) yn+1
1,3 ld
E=0n” |— Bty
tlg

This scheme is not self-starting and requires more storage than
the trapezoidal rule. However, it is more accurate and usually
converges faster. Equations (39) are again taken as the convergence
criteria.

The predictor-corrector scheme (40) is coupled with the following

version of the fourth order Runge-Kutta method,

4

dt - f(y!t)

k; = At£(y_,t)

k2 = ﬁt'f(yn + 0.4kl, et 0.4At)

k3 = At'f(yn + 0.296978k1 + 0.158760k2, tn+ 0.455737A¢) (41)
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k‘+ = M'f(yn + 0.2181(]0&:1 - 3.050965k2 + 3.832864k3, t + At)
Y41 = In + 0.176760k1 - 0.551481k2 + l.205535k3 + 0'171185kh
E = 0(At™)

This scheme has the lowest bound on the error for this family of
Runge-Kutta methods [153].

The solution of a given problem begins with an optional numver
of integration steps using the Runge-Kutta method, (minimum three
time steps) and then shifts to the predictor-corrector method. At
any time step it is possible to change back to the Runge-Kutta methed
to take advantage of its better accuracy. This flexible formulation
also makes it very easy to iIncrease or decrease the time Increment,

At, 1f so desired.
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CHAPTER 6

MODEL COMPARISONS AND RESULTS

The objective of this study iz to develop a general numerical
model for the prediction of 2-dimensional hydrodynamic circulation
in waterbodies which are well-mixed through the water column.

Several example problems for which analytical solutiens are
readily obtainable were solved with the finite element numerical model.
These examples demonstrate how the model performs in situations of
varying geometry and also show the effect of eddy diffusivity on
damping short "noise" waves generated by the numerical scheme due to
truncation and round-off errors. A circulation analysis for Massachu-
setts Bay was carried out,

The initial numerical solutions with the trapezoidal rule
required an average of 7 iterations per time step to cbtain comparable
results. Since the higher accuracy Runge-Kutta method only requires
4 evaluations of the integrand per time step, this was found un-
satisfactory., Convergence with the trapezoidal rule can be accelerated
by extrapolating the integrand at the start of each new time step.
However, this necessitates more storage and the computational effort
iz now of the same order as the predictor-corrector method. Therefore,
subsequent efforts were concentrated on the fourth order Runge-Kutta
and third order predictor-corrector methods.

In the first example, the forced standing wave in a rectangular
channel without friction or coriolis effect was modeled as shown in

Figure 4. The analytical solution is
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Figure 4. Sketch of rectangular chamnel.

TABLE 1

Comparison of analytical and numerical solution.

Rectangular channel. Initial velocities given by analytical

solution. Runge-Kutta method. At=2.5 sec.

SURFACE HEIGHTS

numerical analytical difference time

=-1.000u
-1.v217
-1.0378
-1.0491
-1.0565
-1.5900

0.0000
0.0000
0.0001
0.0001
0.000L
C.0001

-1.0000
-1.0210
-1.0374
-1.0492
-1.0563
-1.0586

COOoOOO0OO

-

0.0017
0.0004
0.0001
0.0002
0.0004

0.0000
0.0001
0.0001
0.0001
0.0001

31/4

VELOCITIES

numerical  analytical

0.
0.
0.
a.
0.
0.

Lo en B e B e BY v B o

0003
0002
0003
0003
0004
0001

.5443
L4382
.3305
.2213
.1108
.C000

COoOOoOoOC O

0.5440

G.4382

00,3303

0.2211

0.1108
0

differance

0.0003
0.0002
0.0003
0.0003
C.0004
0.00m

0.,0003
¢.0000
0.0002
0.0002
0,0000
0,.0000
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n = ———— coé{w—é— (% - 1)} sin wt
cos W—— Vgh

/gh (42)

u=- “leﬁiiﬁj— sin{w—é— Q% - 1)} cos wt

h cos w— vgh

/gh

where the forcing function at the open end, x = 0, is

and L, h are the channel length and depth., The numerical model was
started with the velocity distribution defined by (42) for t = 0.
For t > 0,-n = a sin wt was prescribed at the 3 open end nodes and
the y velocities were set to zero along the boundaries. A comparison
of the numerical and analytical results is listed in Table 1. The
agreement is very good as expected.

In a "real" situation, one usually does not know the initial
velocity field. One possible approach is to start the model with
all surface elevations and velocities set to zero (or some other
estimated values). The second example demonstrates this type of start
up for the rectangular channel. The exact solution was obtained with
the method of characteristics, The results with the Runge-Kutta
scheme for this problem follow the exact solution closely. However,
the predictor-corrector results exhibit an instability characterized
by the growth of short waves as demonstrated in Figure 5. This
phenomenon was attributed to less accuracy of the scheme. The problem
was resolved by introducing some eddy viscosity (Ex = ey =2 =10 ml/sec)

Xy

and again good agreement between analytical and numerical sclutions
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was obtained. For the same time increments, the predictor-corrector
method requires approximately 257 less time than the Runge Rutta
scheme.

The 2-dimensional Courant-Friedricks-Lewy stability criterion
for explicit differencing of the wave equation is

At < 2 (43)

V2 ¢

where § is the grid size and ¢ is the wave velocity., For the rectangular

channel we have

¢ =vgh = /9.81-4 = 626 m/sec.

so that 10 m < § < 40 m > 1.13 sec < Atc < 4.5 sec.

The results plotted in Figure 5 were obtained with At = 2.5 sec.
When At was increased to 5 sec.,, gradual instability was observed.

An analytical solution in infinite series for the harmonic forcing
of a rectangular basin with a slot has recently been derived by Briggs and
Madsen [17]. Figure 6 shows their results for a constant depth (36.6 m)
model representative of Massachusetts Bay. The model geometry and
corresponding finite element layout is shown in Figure 7. The
numerically computed surface elevations and current velocities,

Figures 8 and 9, compare favorably with the analytical. One explanation
for the small discrepancies may be found in the treatment of the ocean
boundary condition. In the numerical model the height is-prescribed
exactly equal to 1.31 m-(l - cos wt) across the slot, whereas the
analytical solution only satisfies this at four discrete points. The
numerical results were obtained with the Runge-Kutta method without

bottom friction, eddy viscosity or Coriolis effect. The C-F-L criterion
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is

=40~

c =49.81'36.6 = 18.9 m/sec

& 5700

= 214 sec

t =
2¢c

c J_- 1.41'18.

9

and a t = 200 sec was selected.

Lastly the tidal and winddriven circulation in Massachusetts Bay was

computed. The geographic boundaries and the finite element grid are

shown in figure 10. Since very little actual data is available, a model

yielding only the gross circulation is appropriate at this time. A

fairly coarse grid of 74 elements and 53 nodes was laid out reflecting

gomewhat the varying bottom topography. The tidal ranges for the two

shore nodes at the extremeties of the ocean boundary were obtained from

tide tables [18] and the tide level was assumed to vary smoothly in

between. The Coriolis parameter was determined for a latitude of 42°N,

£ =0.973-10"% sect. Mo

at this stage.
An initial solution
value of C_ was carefully

f

Cf's for each element, 50
points more closely match

a strong correlation with

for which surface contour

attempts were made to model lateral inflows

for pure tidal motion with a small constant
examined in order to estimate new improved
that the tidal ranges and lag times at the shore
available tide table data. In estimating Cf,
local depth was assumed. The final soluticn

lines at high and low tide are shown on

Figures 11-12 had Cf varying between 0.0025 + 0.0011. However, to

really tune the model, current records at several points are desirable.

The calculated tidal water velocities are shown in Figures 13-14

and typical time histories of surface elevations and velocities are

plotted in Figures 15-16.
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Boston

Fig, 10. Massachusetts Bay. Geographical boundaries and finite

element grid.
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Fig. 11. Surface contour lines after 68000 sec. (1.5 tidal cycle).
The elevations are given in meters above MLW. Note that only

decimals are shown for centroidal elevations.
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Fig. 12. Surface contour lines after 90000 sec (2 tidal cycles).

Centroidal elevations are given in mm below MLW.



~hh-

velocit 1 el
y scate 0 0.2 m/sec

Fig. 13. Computed currents after 56000 sec. (1.25 tidal cycle).
Flooding Tide.
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Fig. 14. Computed currents after 78000 sec. (1.75 tidal cycle).
Ebbing tide.
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The results were cobtained using the Runge-Kutta integration
scheme neglecting convective terms and eddy diffusion in the momentum

equations. The CFL criteriomn is

= 223 sgec.

At < § . 6000
€ vVZ ¢ vZ 19

and a At = 200 sec was selected. The predictor-corrector scheme

was applied to the same problem but exhibited gradual instability

after one tidal cycle (44600 sec). When At was reduced to 150 sec,
comparable results were obtained for more than 2 tidal cycles. However,
5% more computing time was required.

Several cases of wind foreing were also investigated. Magsachusetts
Bay is characterized by a lew Rossby number (about 0.1), small surface
elevation change compared to the mean depth, and minor effect of bottom
friction. Therefore, it is reasonable to assume the response of the
system is linear. This is very important since it allows one to use
superposition which reduces the computatiomnal effort considerably.

To verify the "permissability" of superposition, two wind situations
without tidal motion were executed until steady state was essentially
achieved. The 10m wind velocity, UlO’ was 10 m/sec which produces a
surface shear stress of approximately 1 dyn/cm2 according to the relation-
ship given by Wu [19]:

1 .
=7 Pair €U0

¢ = 0.5-1073.y/?

s
T

10 1< UlO < 15 m/sec.

This is a frequently measured surface stress in the area.
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The steady-state current field for wind from North and Scuth-West
are shown in Figures 17, 18. As a preliminary test of linear behavicr, a
situation with wind from Scuth was also computed yielding numerical’
values of velocities and surface elevations within 1% of the North wind
case, |

Figures 19, 20 show Calcomp plots of a superposition of velocities
produced by wind from SW alone and pure tidal motion, whereas Figures 21, 22
show the same velocity fields but computed simultaneously. The validity
of a linear system assumption as a first approximation is clearly demon-
strated.

The limited experience acquired so far has demonstrated that
the finite element discretization appreach is a reliable and efficient
method for fluid flow problems with complex boundaries. Of the two
integration achemes tested, the Runge—Kutta method seems to be universally
applicable whereas the predictor-corrector scheme is prome to exhibit
instability. If the forcing terms are sufficiently complicated to
estimate, the savings in iterations may give the latter scheme a
computational advantage, even if a smaller time step must be used. This
might, for instance, be the case when the convective terms must be
retained. Also the improved stability through the smoothing effect of

adding diffusive terms needs further examination.
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Wind from due North.
Uniform field, U= 10 m/sec.

Currents 96000 sec after
initial applicaticn of wind.

0.5 m/sec

F

N
»
¥
i

Fig. 17, Computed current field , 4
due to wind forcing from the North.

No tidal motion. Steady-state reached. ¥ . '///

\ .



-51-

Wind from South-West
Uniform field, U= 10 m/sec

/

Currents 96000 sec after
initial application of
wind.

* " *
* -
0.5 m/sec
‘r [—
1
T
=
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—
=
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Fig 18, Computed current field jh ® £
due to wind forcing from the South- -
West. No tidal motion. Steady-state ¥ * )
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Wind from SW

,////;( Uniform field, U = 10 m/sec

; 0.5 m(gecl

Fig. 19. Superposition of computed
fiood tide currents and wind driven
currents.
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Wind from SW
Uniform field, U = 10 m/sec

Fig 20. Superposition of computed
ebb tide currents and wind driven
currents
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- ) - Wind from SW
. / « / Uniform field, U = 10 m/sec

Fig. 21. Flood tide and wind driven
current field.
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Wind from SW

/////;f Uniform field, U = 10m/sec

Fig. 22. Ebb tide and wind driven
current field.
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MATHEMATICAL MODELS OF THE MASSACHUSETTS BAY

ABSTRACT — PART I1

ANALYTICAL MODELS FOR ONE~ AND TWO-

LAYER SYSTEMS TN RECTANGULAR BASINS
BY

DOUGLAS A. BRIGGS
AND

OLE S. MADSEN

A need for qualitative information concerning the hydrodynamics of
Massachusetts Bay has been seen from recent oceanographic measurements and
current studies in the Bay area. In response to this, two analytical models
have been derived for a simple rectangular configuration which can be
applied to the geometry of Massachusetts Bay. A one layer model has been
developed to simulate the conditions found during the winter season when
the water column is well mixed. A two layer model represents the strati-
fied case generally observed, with the presence of a strong thermocline,
during the summer.

Both models are derived from the linearized long wave equatioms in
two dimensions and analytical sclutions are obtained by neglecting Coriolis
force, bottom friction, and wind stress. The models are depth averaged and
r '__—_——-
the geometry of the Bay is represented by a rectangel. The boundary con-
ditions are speclified as zero normal velocity along the walls and a comstant
surface slope across the opening connecting Massachusetts Bay to the ocean.

The results of the two models indicate that the surface elevations
at high tide are fairly insensitive of the assumed conditions (one or two
layer model). However, for the two layer model, relatively large inter-
facial waves are predicted as well as velocities which at some locaticns in
the upper layer, are directed shoreward on the ebbing tide, rather than
seaward. Comparison of available field observations with these results
verify, qualitatively, that these conditions do exist and shows that if a
model capable of predicting velocities iIn the Bay is desired, it must
incorporate the conditions corresponding to a two layer flow.
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CHAPTER I
INTRODUCTION

Massachusetts Bay, as seen in Figure 1-A, lies at the eastern
edge of Massachusetts and is surrounded by land on three sides. The
average depth of the Bay is approximately 120 feet with the ocean
boundary between the tip of Cape Ann and the tip of Cape Cod, a dis-
tance of the order 41.0 nautical miles. Located on the northwest
is Boston Harbor through which three rivers, the Charles, the Chelsea,
and the Mystic, flow into the Bay. In addition, the Cape Cod Canal
exerts an effect on the Bay circulation by allowing an exchange with
Buzzards Bay to the southwest.

The results of current observations and other oceanographic
measurements recently taken in Massachusetts Bay have shown the occur-
rence of some interesting and unusual conditions. Field data concerning
the vertical structure of temperature, salinity, and density suggests
that a rather pronounced stratification exists during the summer
months. Drogue studies during pericds of pronounced stratification
exhibited some rather peculiar phenomena. Thus, it was found that
shallow drogues during ebbing tide proceeded towards the shore
rather than seaward, as expected. Although the well mixed situatioen,
encountered during the winter season, is of interest and qill be
considered, it is the stratified case that is of primary concern since

it is this sitvation that exhibits the most unusual condition.
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Thus it was felt that a simple model predicting the hydrodynamics
of Massachusetts Bay, shown in Figure 1-A, could lead to source insight
into the Bay circulation and possibly explain some of the unusual
field cobservations. Consequently, the theoretical development of two
analytical models, a one layer model repregenting the well mixed
case and a two layer model representing the stratified case, was
undertaken in an attempt to explain some of these conditions. The
primary quality of the desired model was that it be simple, such that
an analytical solution could be obtained and readily evaluated. This
was attained by the simplifying assumption of a depth averaged
rectangular configuration for the Bay area. Further, by linearizing
the governing equations neglecting Corlolis force, bottom friction,
and wind stress, a simple analytical solution was obtained, which
qualitatively explains some of the observed phenomena.

The models predict currents and amplitudes for the entire area
of Massachusetts Bay. Results of the model show a difference in the
predicted current pattern, suggesting the necessity of including, in
a more sophisticated model, the effects of stratification if an accurate
prediction of the current field is desired. By cowmparing the results
of the two layer model with field observations, it is demonstrated
that such occurrences as relatively large interfacial waves and
currents flowing toward the boundaries in the upper layer during an
ebbing tide are qualitatively explained by the simple tw; layer

model presented here,
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CHAPTER II

THEORY AND DERIVATION OF THE ONE AND TWO LAYERED MODELS

2.1 Linear Long Waves

Two dimensional long wave propogation has, in the past decade,
received considerable attention from both analytical and numerical mod-
elers as the system of equations describes a physical situation of
considerable interest to the coastal engineer. Able to predict the
hydrodynamics associated with storm surge and tidal-wave propagation,
models utilizing long wave theory have provided engineers and related
practitioners with the ability to predict tidal currents and elevations
in estuariés and coastal areas.

The long wave equations describe flow in the nearly horizontal
direction, with the implication that the pressure distribution is
hydrostatic and that the wvertical accelerations are negligable. Due
to the fact that even numerical solutions of the non-linear equations
are rather difficult to obtain, the present models will be restricted
to the linearized equations of motion in two dimensions. The equations,
which are vertically averaged, neglect convective accelerations and
allow a simplistic approach in their application to Massachusetts Bay.

Derivation of the ome and two layered models are quite similar
in nature and both include, in the governing equations, Coriclis
force and frictional forces.

However, in order to preserve simplicity, we neglect the

influence of the Coriolis force as well as bottom and interfacial
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friction in the application of the two models.

2.2 One Layered Model

The dynamic equations for the one layered model can be derived
through the application of the Navier-Stokes equations for in-
compressible fluids., The equations of continuity can be derived by
summing the mass flux through a control veolume. Representation of
the coordinate system and nomenclature for the one layered model is
found in Figure 2-A. In linearized form, assuming constant depth and
vertically averaged velocities, the governing momentum equations for
tidal wave propogation, ilncluding bottom friction and Coriolis force,

become in the x and y directions respectively:

an  du 1 1. _ =

B 5y + T 5 Cf U = u ZJe(sin¢)v =0 {2.14)
an ov 1 1 =

g 5y + Freaic Cf U LY “+ Zwe(sin¢)u = 0 (2.1B)

where u and v are respectively components of the water velocity in the
x and y directions, t is time, g is acceleration due to gravity, N

is the surface elevation relative to mean sea level, Cf is the local
shear—stress coefficient, U = iuz + v2, h is the depth, w, is the
angular velocity of the earth, and ¢ is the latitude. The linearized

form of the continuity equation is:

an , 3hw) | B(hw)

at ox ay

=0 (2.2)

Assuming periodic motion, where w = %ﬂ-and T equals the tidal period of

12.4 hours;
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(u,v) = Real {(u,v)e "t} (2.34)

Real {neimt} {2.3R)

n

it can be shown after linearization of the friction term by letting

l l . _ ]
A=z C. U i and by setting f = 2 we(sin¢) that:
g g& + dwu - Au - fv = 0 (2.44)

(2.4B)

]
o

o,
g 3y + iwv = v + fu

Equation (2.4B)} can be solved for v which is then introduced

into Equation (2.4A) giving u in the form:

- o4 an fg an
u == = - —— (2.54)
, g2 % geen?ae? W
iw -A 4+ T/
1w-A

By the same menner solving for u in Equation (2.4A) v can be

obtained as:

- e &8 on, _fg o
Y £ 0w ' Gw-n)? 4 g2 O -5
fw=A 4 ——
iw-A

Differentiating equation Equation (2.5A) with respect to x and

Equation (2.5B) with respect to y and multiplying both by h allows sub-

stitution of the E%EEL and éé%ﬁl terms in Equation (2.2). The

continuity equation now becomes:

2 2
an _ __gh (32+3g)=o (2.6)
f dx ay

=17~



an
gt

model becomes in final form:

By letting = iuwn the governing equation for n in the one layer

2 2 2 2
i%+§—g»+9—(1+i%-m—'x)n=0 2.7)
x> ay” o 141l

The special case of no bottom friction,h = 0, and no Coriolis force,

f = 0, leads to:

Bzg an m2
2+——2+'—HT]=0 (2.8)
Ix Jy g

It is clear from (2.34A), (2.5B) and (2.7) that a non-zero bottom

shear stress will introduce a phase difference between u, v and %%
and %&. The magnitude of the term %-may be estimated, from an

assumption of C. = 0.005, h = 120 ft, and U = 1 ft/sec, to be‘%
which indicates that it 1s reasonable to neglect this term.

It 1s worth noting im the governing equation, the importance
of Coriolis effect on Massachusetts Bay where the mid-latitude is
approximately 42°N. The Coriolis term in Equation (2.7) is of the

2 42°, and obviously neglecting f is a

order 0.45 since (5)2 ~ sin
relatively poor assumption. However, by retaining Coriolis, the
boundary conditiong become complicated and difficult to solve and since
the purpose of the study is to develop a simple qualitative model, f
is set equal to zero.

Now that the simplified governing equation has been developed

for the one layered model, the various conditions must be imposed on

the boundaries to specify the particular problem. As shown in

~-18-



Figure 2-B, a simple geometry has been assumed with effectively im-

permeable walls on all sides except at y = Yo between X and X, where
there is an opening representing the ocean boundary between
Massachusetts Bay and the Gulf of Maine,
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Consequently the velocities can be specified along the walls such
that u = 0 at x = 0 and X for all y and that v = 0 at y = 0 for all x

and at y = Yo for 0 < x < X1 Xy < x < X . Neglecting Coriolis effects

it is seen that u = 0 corresponds to %% = 0 from Equation (2.5}
and that v = 0 corresponds to g% = 0 from Equation (2.5B). Con-

sequently the boundary conditions may be summarized as:

Ar x =0 %% = 0 (2.94)
- N _
At x = X T 0 (2.98)
Aty = 0 %E-= 0 (2.9C)
0 < x<x
- 3 $xIx
Aty =y, 3y = 0 (2.9D)

If the width of the opening between X, and Xy is small it may be
assumed that %g-or v is constant over the entire opening. A gross

conservation of mass consideration then gives, with ¥ being the volume

of fluid in the bay above mean sea level:

¥=/dx /S ndy

%% = rate of change of volume within the bay must be equal to the inflow

through the opening. This can be written as:

¥

ryeialie v{x,~x,)h aty =y (2.10)

271 o

From Equation {2.5B), assuming no friction and no Coriolis effect,

it can be shown that:
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o dw_ 1 ¥
Iy g (xz-xl)h ot (2.11)

Assuming that the tidal motion within the bay is periodic where

¥= ve ™t or %% = iw¥ the last boundary condition can be determined:

2
on _ _w_ 1y (2.12)

A
]
(A
»

The solution can be expected to be determined except for a
constant since only derivatives are prescribed as boundary conditions.
This constant is determined from considerations of the amplitude of
the tidal motion at some point in the bay.

The boundary conditions specified in (2.94) and (2.9B) suggest
an x-dependence in the solution of 1 such that n = cos kn x. It ig

apparent that-Eﬂ =0 at x = 0 and alsc at x = x_if k x = nm for
gx ] n o

n=20,1,2,.... Thus kn will take the form:

L (2.13)

The boundary condition in (2.9C) suggests a dependency in y such
that n = cos m y. As a result %§-= 0 at vy = 0 and consequently a

solution of the following form will be sought:

=]
iwt
n=e g An cos knx cos m y (2.14)

The solution must satisfy the governing equation (2.8), and by
substituting the general solution (2.14) into (2.8) m can be solved

in terms of kn:

m = —-— - k n=0,1,2... (2.15)
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For the particular case of Massachusetts Bay h = 120 feet and x =

59. NM (nautical miles) and it can be shown that m is imaginary for

n > 0. Since we are seeking only that portion of the solution which is
real and by the fact that cos 1 & = cosho the general solution may be

written as:
R [ ]
_ dwt
n =e { AO cos m y + nzl Ah cos knx cosh mny} (2.14)

where m is evaluated for n = 0 in Equation (2.15). The constants An

must be determined from the remaining boundary conditions specified

at y = yo.

Evaluating the volume of water in the bay, ¥, it can be shown
that only the term corresponding to n = 0 contributes to the volume
since integration of the terms for m > 0 from x = 0 to X, give zerc hy

virtue of the boundary conditions. Henca:!

1 .
¥ = E;—-ono sin my (2.17)

which determines the boundary condition, stated in (2.12), to be
satisfied at y = Yor

The y derivative of the solution given by Equation (2.16) can now
be matched at y = Y, with the boundary conditions given in (2.9D) and
(2,12) with ¥ from (2.17). -Through a Fourier expansion the coefficients

An can be determined leading to the final form of the general sclution:
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Neae feos By - § 2m° sin moyo(sln anZ - sin knxl)
n=] mnkn(XZ - Xl)
cosh m_ vy
~—mm——— 00§ k_X} (2.18)
sinh m_y n
n‘o

where Ao can be evaluated once the elevation 1 at some point in the

Bay is knowmn.

2.3 Two Layered Model

Derivation of the two layered analytical model is similar to the
one layered one although discrete differences appear with the intro-
duction of the second layer. The dynamic equations are again formu-
lated in two dimensions by the application of the Navier-Stokes equa-
tions and the continuity relationships through a mass balance. The
model is able to predict water surface and interface profiles and
veloeities in beth layers.,

Representation of the coordinate system for the two layered
model is shown in Figure 2-C. The lower layer is specified as layer
one and the upper layer as layer two with the subscripts 1 and 2,
respectively. With this the dynamic equations, in linear form, for
the two layered model become:

Layer 1, =x—-direction

Ef_;+fgga”2+"1'nga”1_ic S R S
3t b, ©Bx o] 5x " 27 1h "1 ph
2we(sin ¢)vl =0 (2.1%4)
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Layer 1, y-direction

Ezi + Eg g an pl_pz B anl - éfC u i—-v + Iiz— +
ot Py oy Py dy 2 £ 71 h1 1 plhl
2me(sin ¢) uy = 0 (2.19B)
Layer 2, =x-direction
z“Tz+ g ::2 - :;:2 +p:§’2‘ - 2w (sin $)v, = 0 (2.18C)

Layer 2, vy-direction

sz anz Tiy Tsy
3t " %% "o Yon
272 22

+ 2u_(sin $lu, = 0 (2.19D)

where p is the density, Tix and Tiy are the interfacial friction terms,
and T indicates a surface wind shear stress. The remaining terms were
defined in the one layer model and remain the same. The conservation
of mass equations are similar to those in the previous model and when

linearized take the form:

Layer 1
an 3(h,u.) a(h,v,)
1 171 11
== + T + g =0 (2.204)
Layer 2
an N a(hzuz) . a(hzv2 i 3”1 _ o, (2.208)
ot ax oy It '

The above continuity equations have assumed two immiscible fluids,
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i.e., no exchange of mass across the interface. If a mass exchange
between the two layers were considered the interfacial friction would
be influenced by the associated momentum transfer across the interface.
For a discussion of this reference is given in Pedersem (1972). The
governing equations are the linearized form of those given by Grubert
and aAbbott (1972).

It is obvious that retaining the Coriolis and the frictional
terms tends to make the governing equations quite lengthy and difficult
to solve. Consequently, the bottom and interfacial frictiom terms,
the Coriolis force, and surface shear stress will be set equal to zerc
in order to retain the simplicity that is desired in the model.

It is iﬁportant to note the result of the steady state condition,

as in the case of wind setup, where du and Ez-are zero. It can be

. at at
an n,
shown that if T and 5;— do not equal zero then the momentum equations

for layer one, given by (2.19A) and (2.19B), reduce to:

x-direction

an p an
1 2 2
3% = " p-p. Bx (2.214)
172
y-direction
an o) on
1 2 2 ,
= — = {2.21B)
dy py=P, 3y

Obviously, if the densities of the two fluids are within a few percent
of each other, the slope of the interface is far greater than that of
the surface. In addition the slope of one is tilted in an opposite

direction from the other.

—26—



In Massachusetts Bay the demsity of one layer is gemerally within
0.4 percent of the other. Since the two densities are so close to-

gether, an approximate form of the mowentum equations for layer one

p
could be obtained by replacing Eg'in n, by unity.
1

Again summing the tidal motion in the bay to be periodic we take:

iwg
(T'il, nzs uls uzb Vls vz) = Real (nls nzs u19 uzs vll vz) e

3u1 Buz Bvl sz

G » 300 3¢ » ac ) T Wl vy, vi. V)

the governing equations can be derived for velocities and elevations.
Velocities in the upper layer, u, and V,s can be obtained directly

from the momentum Equations (2.19C) and (2.19D)

an

Y2 7T fa'ﬁzg (2.22A)
on
2

Va =~ fﬁ'ﬁ;‘ (2.22B)

By taking the derivative of u, with respect to x and the derivative
3(bu,3  Bh,v,)

of v, with respect to y, the —22° and —2 2
2 * ox dy

obtained and introduced into the continuity equation for layer two,

terms can be

(2.20B). 1In terms of Ny the governing equation for the interface

profile becomes:

gh, B2”2
ng =Ny +— (~—5— + —3 ) (2.23)
w ax ay

The z and y derivatives of n, can now be introduced into Equations
(2.19A) and (2,19B) respectively. By this the velocities in the lower

layer are determined as:
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3 83

an p,~P, gh, 97N n
ul=-$—§—3—fa 12 22 32+ 22) (2.26A)
i ox Py w ax X0y
3 3
an p,=p, gh, M an
y 1w ax“9y oy

Now that the velocities in layer one have been derived, it only
remains to determine the equation governing Nye It should be noted
that the development of the governing equations has specified all
velocities and ny in terms of Nye The surface profile, My, can be

determined in much the same manner in which ny was found, i.e.,

B(hlul) 3(hlvl)
5 and-*TQr-—-can be derived from Equations (2.24A) and (2.24B)

respectively and along the Equation (2.23) can be introduced into the
Conservation of Mass equation for layer one, (2.20A). Consequently,

the governing equation for n, takes the form:

gh+h))  3°n, a°n,  gh gh, py-p, M,
I 7 Y2 0t 7 7 5 Gt
w ox oy w” w 1 9x
2a“n2 3“n2
55 + 4)=0 (2.25)
3x 9y ay

For the case 0L = 0y it should be noted that the above equation re-
duces to the linear long wave equation in two dimensions.

The same geometry used in the one layered model will be applied
to the two layered situation. As shown in Figure 2-B, Fhe Bay is
agsumed rectangular with impermeable boundaries except for the section
between Cape Cod and Cape Ann which is open to the Gulf of Maine.

The boundary conditions are formulated by specifying the wvelocities,
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in both layers, equal to zero along the walls and can be summarized

as;

10 Yy = Q at x = 0 and X, (2.264)

(2.26B)

H
(=)

Vis Vo = 0 at y

This suggests a solution ¢f the following form:
iw v
t
n, = Z An cos kn x cos m Yy (2.27)

where the constants An’ kn’ and mn mist be determined for each n.
Applying now the boundary conditions in (2.26A) to the assumed

solution for u,, given by Equations (2.224) and (2.27), kn can be

2!

derived in the following form:

k =— n=10,1,2,...

which is the same as derived previously for the come layered case and

will satisfy u, as given in Equation (2.244),

1

The condition that v, is equal to zero at y = 0 can be applied

2

to the sclution for v, as given by Equations (2.22B) and (2,27).

Combined with the expression for vy it is seen that both have a y
dependence given by sin wy which wvanishes at y equal to zerc. Thus
the assumed solution, as given by Equation (2.27), meets all the
specified boundary conditions and seems promising as the general

solution for ”2'

Since kn has been determined it now remains to find the
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expression for m - Introducing the assumed solution for n, into

the governing equation for the surface profile, Equation (2.253),
yields an expression which can be reduced to the form amﬁ + bmﬁ +c =
0. As it is quadratic, the expression can be solved directly for m,

to the following point.

2 h,+h, p v// 0, =D h.h
of M P1o L, S, P 12

h D,=p p
1 1 "2 1 (h1+h2)

5 )

Pi=Py  hyhy . AP

The quantity & which will be far smaller

P1 (hl+h2)2 - A
than unity. Thus, the approximation can be made that ¥l-£ equals

1l - %‘E. With this the final form of m is obtained as:

'/‘Ir w2 2
o = .k (2.294)
ny g(hl+h2) n
W’ P bythy w? 2
o T h - h T g(h,+h.) kn (2.298)
2 ghy P17Py My gl Thy

where (2,29A) is seen to be identical to the result obtained for the
one layer model, (2.15). Thus when the Bay dimensions are small

compared to the tidal wave length it can be seen that m is imaginary

1
except for kn = 0. However, m will start out by being real if
PP 2
; 2 is sufficiently small, but at some n = N, m will alsc become
1 2

imaginary. Hence, the solution may be written as:
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o]

iwt
nz—e {Ao cos m0 vy + E An cos knx cosh mn ¥
1 n=1 1
N-1
+B cosm y+ z B cosk xcosm y+
o o .n n n
2 n=1 2
oo
Y B cosk xcoshm y} (2.30)
n n n
n=N 2

The solution for n, can now also be written in terms of An and Bn
by the substitution of Equation (2.30) into Equation (2.23). From
(2.30) and the similarity between {(2.29A) and (2.15) it is obvious
that the terms involving the constants A are similar to our one layer
model, whereas the terms involving Bn express the influence of the two
layered system.

As previously discussed, a gross conservation of mass consideration

can be defined as:

¥ =/ dy f ndx

Applying this to the total water column and integrating from x = 0 to
X and y = 0 to Y, yields the equation for the volume of fluid in

the bay.

¥iotal =7 &y S nydx

1 1 R
X [Ab Er——sin(mo yo) + B0 Erﬁ-51n(m0 yo)]
0y 1 o, 2

(2.314)

By the same method the volume, ¥ ,of the lower layer, can be de-

1’

termined since the solution to ”1 has been determined:
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_ _ 1 . 1 .
Vl = [ dy S nl dx = xO[AO — 51n(m0 yo) + ﬁja—h'31n(mo yz)]

o1 i o, 2
gh,
-x ~~[A m sin(m vy )+B m sin(m y )] {2.31EB)
o} m2 ° oy 070 o o, 0,70
av BVZ
The change in volume within each layer, I and 3t is periodic

and must be equal to the inflow through the opening. Consequently,

as in the one layer model, the following can be written:

avl
3c - T ViR aty =73, (2.328)
3V . -¥.)
total 1 _ -
5e - - vz(xz—xl)h2 at y =y, (2.32B)

Since v, is given by Equation (2.22B) it can be shown that, by
an
substitution of v, into Equation (2.328), §§2-will take the form:

3n2 wz
oy~ ~ 8h2(32"x1) (vtotal-vl) (2.33)

an

By the fact that ¥, and ¥ are given and since Iy can be obtained

1 total
from Equation (2,30) the above equation can be expressed completely in
terms of An and Bn. Similarly, v, can be obtained by substitution
of the solution for n, into Equation (2.24B) which when introduced

into Equation (2.32A) also, by knowing Vl, gives an expression

completely in An and Bn' These equations become:
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Layer 1 (Bottom Layer)

Q0
Am sin moy, - E Anmn cos kn x sinh moy + Bom sin ooy,
°9 1 n=l " M1 1 ° 2 2
N-1 o
+ z Bm cosk xsinm y - z Bm cos k xsinhm y
&, nn, n n,"o Ly o, n n,"o
p,-P, B&h o .
12 —Eg- [ E - A knz m_ cos kn x sinh m_ y
1w e | npe
® 3 N-1 2
+ E Anm cos kn::sinh m y0+ z Bnkn m cos kn X sin m Y,
n=1 " "1 17 n=1 2 2
- z Bk " m cosk xsishm y+ E Bm cos k xsinm vy
aey BB Dy n ny"o Sy M, n n, 0
o0
3
+ E Bn 0 cos k xsinhm vy ]=
neN n, n n, ‘o
2
+ w ¥ X, <X <X
ghl(x2 - xl) 1 1 2
0 elsewhere
(2.344)
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Layer 2 (Top Layer)

® m
A m sinm y - E n
o — A sinhm vy +B m sinm v
1 1 n=1 2 n.”o 0 o 0,” 0
1 2 2
N~-1 mn2 it mn2
+ 5 B sinm y_ - E 5 B sinhm v =
n=1 2 n=N 2
m2
ghz(xzaxl) (v:otal - ¥1) ¥} LEr
0 elsewhere
(2.34B)

Bince the functions cos knx with kn = nw/xo are orthogonal on the
interval x = 0, X3 each equation can be multiplied through by

cos kmx and integrated from 0 to X - By this method two equations,
each with twe unknowns, An and Bn’ are obtained for each n.

Representatively, these take the form:

a A +b B =c¢c A +d B {2.354)
n n n n n ‘o n o

a'A +b'B c'A +4d'B (2.35B)
n'n n n n a n o

where the coefficients a s bn' o and dn in both equations are known
functions of n. Thus, in principle (2.35A) and (2.35B) could be solved
to give the constants An and }3»[1 as functions of n, Ao and Bo'

From the discussion following the derivation of (2.30) it is
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clear that the constants Ao and Bo’ although not independent, govern
primarily the surface and interface elevatiouns respectively. It should
be noted that by letting Bo equal to zero the solution for N, as

given by Equation (2.30) approximates the form of the general solution
for n in the-one layer model,

The constants AD and B0 must be specified by some type of field
information, either elevations or Velocities, at a known lacation.
Specifying Ao and B0 allows the two equations to be solved for An and
Bn which can then be introduced Into the governing equation for My-
With this the remaining velocities or profiles can be determined

through the appropriate governing equations.
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CHAPTER III

RESULTS OF THE ONE LAYER MODEL

The one layer model represents the well mixed situation generally
found in Massachusetts Bay during the winter months. Oceanographic
data collected by the U. S. Department of the Interior (1959) shows
that for the duration of the winter season the water columm is fairly
uniform in temperature and salinity because of the absence of a
thermocline. As a result the Bay can be assumed of constant density
with the one layer model being quite representative of the physical
situation. The one layer model is consequently able to yield a simple
prediction of the surface profile and currents due to the tidal action
in the Bay for the winter season.

3.1 Computational Aspects

3.1.1 Mathematical Simnlation of the Ocean Boundary

In the develeopment of the general solution for the one layer
model, as given by Equation (2.18), it was stated that to predict the
surface profile and velocities the constant A0 mist be determined by

-field data. This field information which is required for the evaluation
of Ao can either be a tidal amplitude or current information specify-
ing speed and direction for some known point in Massachusetts Bay.

Since it is generally quite difficult to extract tidal current in-
formation from current meter records, a specified surface elevation
will be used for the determination of Ao. Specifically, the tidal

range at Boston Light, located just outside Boston Harbor, has been
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determined by the National Ocean Survey (1973) to be 9.0 feet with
a corresponding tidal amplitude of 4.5 feet. This information was
obtained from tide gauge records taken at Boston Light located on
Little Brewster Island shown in Figure 3-A. With the geometry and
coordinate sysgem specified for the one layer model, Boston Light
can be located at x = 10.0 NM, y = 0.0 NM.

Since the reference datum for the surface elevation in the omne
layer model is mean sea level (MSL) it will be the tidal amplictude
with which we are concerned. Thus, using 4.5 feet for n at the
x, y coordinates specified above, Ao can be determined for a particular
geometrical configuration from Equation (2.18). With the determina-
tion of this constant, the current field and surface profile for the
entire Bay can be computed. It should be cauntioned that Ao is dis-
crete for only one geométrical configuration. Changing the depth of
the Bay or the width of the opening demands that Ao be recalculated
regardless of the fact that the same surface elevation is prescribed
at the same location.

The constant AO actually determines the magnitude of the forecing
function to be applied at the open boundary, across which the tidal
amplitude is considered constant. In the one layer model
the boundary conditions are so chosen that no interaction between the
motion in the bay and that in the ocean is considered. This has
implications where the exclting frequency is close to a resonant
frequency. However, thig plays a minor role in the case of tidal

excitation of Mass Bay as will be discussed later (Section 3.3).
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Consequently, by specifying the tidal amplitude at Y = ¥g» the two
dimensional bay appears to be driven by a wave with the magnitude a
function of AO.

The boundary condition, specified at y =y, for X Sx< Xo
is given by Equation (2.12) and derived by considering the mass flux
through the channel opening. An important assumption in determining
this boundary condition is the assumption of gg-or v being constant
over the entire width of the opening. This assumption has previously
been made by Ippen and Goda (1963) and would appear reascnable for
narrow openings. It should be pointed out that the specified value
of gg-over the opening, as given by (2.12), is a function of Ao'
Since the value of Ao is determined by matching the tidal amplitude
at one point, it is not possible to satisfy the assumed condition of
2 constant tidal amplitude across the opening. However, the opening
between x and X, can be divided into increments and, since the
governing equations are linear, the solution for n can be matched at
the center of each increment, This method of solution will be dig-
cussed in detail later in this chapter.

The one layer analytical model for Massachusetts Bay was
computed for a number of variations of the geometrical configuration
presented in Figure 2-B. For the purposes of the model the bay is
assumed rectangular with a length of 59.0 NM represented as X and
a width of 20.0 NM represented by Yo The width of the opening,

given by Xy - Xy and representing the ocean boundary, is assumed to

be 41.0 NM while the average depth in the Bay is equal to
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approximately 120 feet.

Although a number of variations were introduced into.the geometry
in an attempt to simulate different conditions that could exist, only
three variations will be discussed in this report, The first and most
basic is the configuration presented in Figure 3-B which represents
the geometry specified in the theoretical development of the one layer
model, Initially, by setting N equal to 4.5 feet at Boston Lighe,
the constant AO can be calculated. The surface profile and current
field in Massachusetts Bay can then be computed with the results
shown in Figure 3-B. Computed at time t = 0 from Equation (2.18),

N is plotted in feet above mean sea level and corresponding to the
amplitude at high tide. The surface elevation is seen to increase
toward the southern or lower portion of the Bay. The speed and
direction of the tidal current is given in knots during maximum

ebb flow and is the resultr of plotting U where, as before,

U=y u2 + v2. As can be seen by their governing equations, these
velocities are functions of the surface slopes, %E—and %g; and they
are consequently perpendicular tc the co-tidal lines. Since the
equations are periodic the surface profile attains a maximum slope
at t = %—+ n %—for n=20,1, 2,... with maximum velccities ocecuring
simultaneously over the entire bay.

The model to this point has matched the surface elevation, n,
with the boundary condition given by Equation (2.12) at anly one

Xy~%y
point in the opening, i.e., —%— « It is obvious from the results

presented in Figure 3-B that the surface slope between % and X,
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does not equal zero and in fact the tidal amplitude varies of

the order 0.40 feet across the opening. Although seemingly insignifi-
cant, this contradicts the physical assumption that n remains constant
across the opening. As mentioned before, a method exists such that

N can be matched at more than one point aleng y = Y, between %y and

x This is possible since the solution for 1 is cobtained from a

2°
linear governing equation. Consequently, by dividing the opening
into a number of sections the effect that one section exerts on the
remaining sections can be computed. The surface elevation for the
center point of each section can then be determined as the effects
from the other sections are additive at that point, Computationally
this requires, for n sections, the solution of n equations with n
unknowns. This allows the surface elevation to be matched at n
points across the opening therefore forcing the surface profile, at
Yy =¥, to better approximate the condition of N constant across the
opening.

This method can be applied to the particular situation involving
a partial constriction across the channel between % and Xy~ In
particular, this is introduced in an attempt to model the effect
that Stellwagen Bank exerts on the tidal flow into Massachusetts Bay.
From Figure 1-A it can be seen that Stellwagen Bank is a shoal area
between Cape Ann and Cape Cod where the average depth of the Bank
is approximately 90 feet, although in some areas depths of less than

60 feet occur. Since the possibility exists that the shoal could

form a partial blockage to the tidal flux between the Gulf of Maine
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and Massachusetts Bay, a method to model such an effect was introduced.
This consisted of dividing the channel opening into two smaller chan-
nels separated by an impermeable constriction from x = 16.5 NM to

x = 29.0 NM as shown in Figure 3-C. Representatively, the method of
solution for this problem containing two channels, designated I and

II, becomes:

a; A + bI BH =C (3.1A)

ar; AI + bII BII =C (3.1B)

where AI and BII are the values of the arbitrary constants for the
two solutions obtained where one of the two openings is considered
open and the other closed. ar and bI can be calculated and reflect

the magnitude of the influence of AI and BI regpectively at the

1
center of one opening and ary and bII reflect the same influence
for the second chamnel. C is the magnitude of the tidal amplitude
that is to be matched at the center points of both chanmnels. From
this, Equations (3.1A) and (3.1B) can be solved for the two un-
known constants AI and BII'
The surface profile for this variation of the one layer model
is plotted in Figure 3-C. With an amplitude of 4.5 feat specified
at Boston Light, an increase in the surface elevation of almost 0.20
feet occurs behind the assumed impermeable wall separating the two
openings. This result casts some doubt on the validity of this

particular model, which will be discussed later (Section 3.3}, and

velocities are therefore not shown.
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The third variation of the one layer model is similar to the
model previously discussed with a full opening between X = 0.0 NM

and X, = 41.0 NM. Although the channel width is again 41,0 NM, the
difference occurs in the treatment of the opening and the corresponding
matched conditions. Here the channel is divided into four increments
which, for reasons previously discussed, allows a better approximation
of the boundary condition that N be constant across the opening,

since a relatively flat surface profile, at y = Yo is produced for
each of the 10.25 NM increments. The method of solution discussed

in the Stellwagen Bank model was employed and resulted in four
equations and four unknowns with the matching point for n cccuring

in the center of each increment.

Results of this model are plotted in Figure 3-D and show the
surface profile across the opening much more horizontal, and
consequently more representative of our assumed boundary condition, than
that given by the situation where N is matched at only one point,
Obviously, dividing the channel into increments is advantagecus since
the boundary conditions are better satisfied, However, for a large
number of channel increments, the solution becomes tedious to evaluate
since the solution will consist of the summation of n infinite series

where n is the number of channel subdivisions.

It should be noted that although the value of gg-(v) is specified
constant across each incremental opening, it was not impésed that

%3 be the same for all increments. The solution, however, clearly

shows that on (v) is essentially the same for all increments, except

dy
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for a region close to the tip of Cape Cod, where deviations can
be expected,

Alternate to an analytical solution, the hydrodynamic equations
for the transient response of water bodies to tidal excitation can
be solved by numerical methods. Tn particular, the finite element
model has been applied to many problems in coastal and ocean
engineering. Conner and Wang (1973) have recently applied such a
model to the configuration of Massachusetts Bay. The model is re-
stricted to vertically well mixed two dimensional flow and can in-
corporate both irregular geometry and variable depth. The numerical
model employs triangular elements of varying dimensions and was
first applied to a simple geometry identical to that for which
results of the analytical model have been presented.

The surface profile and velocities are computed for the finite
element model such that the results can be compared directly to the
one layer analytical model. The numerical model is shown in Figure
3-E and neglects bottom friction, eddy viscosity, and Coriolis
effects. Results for the numerical model compare favorably with those
given by the analytical solution shown in Figures 3-B and 3-~D. It
can be seen that only small differences exist and these are partially
explainable since the boundary conditions along the ocean opening are
treated differently in the two models. The analytical model satisfies
the boundary elevation criteria at discrete points (one for the case
presented in Figure 3-B and four for the results given by Figure 3-D)

whereas the numerical model satisfies the condition of constant
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amplitude across the opening exactly. Comparison of the results

of the analytical solution with those from the numerical model serve
to demonstrate the close agreement between the two approaches and one
cf the reasons for developing-the analytical one layer model was in
fact to furnish Conner and Wang (1973) with a particular solution
which could be used to test their numerical schemes.

3.1.2 Number of Terms Required in the Determination of 1}

The solution for n, given by Equation (2.18) and the solution
for u and v, given respectively by Equations (2,5A) and (2.5B), were
programmed on the Hewlett-Packard 2114B digital computer, allowing
rapid computation of the surface profile and currents for the one
layer model. It is important to note that the selution for N contains
a summation for m = 1 to ». A test for convergence of the summation
and the number of terms required waé of primary concern. Results
clearly indicated that convergence was achieved by n = 25 although
all computations for the one layer model were carried to n = 100.

3.2 Data Available for Comparison

Verification of the results of the one layer model, especially
the predicted surface profiles, requires field information on the
variation in tidal range over the Bay. Tide data taken by the National
Ocean Survey (1973) in Massachusetts Bay has provided this information
and has allowed the determination of the differences in tidal amplitude
and surface slope. With Boston Light as the reference point, Figure
3-A shows the differences in tidal amplitude for selected locations

around the Bay perimeter.
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The information can be directly compared with the results of the
one layer analytical model. The surface profile shown in Figures 3-B
and 3-D, where the channel between X and X, is completely open,
produces some interesting facts when compared with field observations.
Both models appear somewhat conservative in predicting the longitudinal
slope from one end of the Bay to the other. Interestingly, the model
with a one increment channel, shown in Figure 3~B, best approximates
the surface slope computed from the tidal records in Cape Cod Bay.
When comparing the surface elevation at specific locations, it can be
seen that the four increment channel gives a close comparison at Race
Point and Provincetown while the one increment case compares favorably
at Gurnet Point and in the Gloucester Area.

Information on tidal currents around the Bay alsc allows a
qualitative comparison of the model results with field data. Current
observations taken by Butman (1971) confirm that velocities are of
the same order of magnitude as those predicted by the model. However,
these predicted results of velocities may be somewhat affected by the
neglect of Coriolis force and the comparison can only be considered

qualitative.

3.3 Discussion of the Model Resgults

The results of the one layer model for tidal amplitudes, when
compared with available field information, are certainly acceptable for
many situations, in spite of the many simplifying assumétions made in
the development of the model and its application. Some of these

assumptions will be discussed in the following.
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One of the terms neglected during the development of the governing
equations was the effect of friction on the tidal motion. As mentioned
previously, the bottom shear stress, Tb' creates a tidal phase lag
from one part of the Bay to another. However, it can be seen from the
National Ocean-Survey Tide Tables (1973) that phase differences between
the north and south end of Massachusetts Bay are small and, at high
tide, average only about 10 minutes. Conseguently, the nmeglect of
friction seems appropriate for the physical situation considered.

Another important consideration is the possibility of resonant
oscillations occurring as a result of the tidal forces. For an analysis
of wave induced oscillations in harbors by Ippen and Goda (1963), the
resonant characteristics of simple geometrical configurations has
been determined. Applying their work on the frequency response of
asymetric harbors to the configuration assumed for Massachusetts Bay,
where the tidal wave length is of the order 456.0 NM, since L = Tvgh,
the following can be concluded: (1) No resonant oscillations occur
in Massachusetts Bay as a result of tidal excitation, since even the
first resonant mede cannot be excited and (2) A wave length of less
than 300 NM would be required to excite the first harmonic.

Figure 1-A shows that in the southern portion of Massachusetts
Bay, more properly called Cape Cod Bay, gradual shoaling exists from
approximately 13.0 NM offshore to the shoreline along the lower end
of the Bay. The possibility exists that an additional increase in
tidal range could ocecur in this area as the situation is quite analogous

to a progressive two dimensional reflecting wave from a gently sloping
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beach. That the tidal wave in the southern part of the Bay may be
regarded approximately as a two dimensional standing wave in the x-
direction is evident from the results given in, for example, Figure
3-D. This problem was treated by Doret and Madsen (1972) and using
their results an increase in tidal amplitude, due to the shoaling at
the lower end of the Bay, may be estimated to be of the order 0.06
ft., which is insignificant although giving a closer agreement between
predicted and observed tidal amplitudes in this part of the Bay.

The variation simulating the effect of Stellwagen Bank on the
tidal motion of Massachusetts Bay, although producing some interesting
results, exhibits an increase in tidal amplitude behind the assumed
barrier. Since the average depth of the shoal is only about 30 feet
less than the average depth of the Bay, the effect of this increase
in surface elevation will result in a considerable amount of volume
exchange taking place over the shoal. This is not consistent with our
assumption of an impermeable barrier, and conseguently this model is
discarded.

Certain known phenomena occurring in Massachusetts Bay contriburte
to some of the differences seen between the analytical results and
field data. One of these is the body of water contained within the
area surrounding Boston Harbor. This is a relatively shallow basin
that most surely influences the hydrodynamics of the Bay, especially
since it is the discharge point for three rivers in the Boston area.
Additionally, the Cape Cod Canal, which forms an artery between

Massachusetts Bay and Buzzards Bay 15 NM to the southwest, has a strong
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effect on M as can be seen in Figure 3-A. A 0.5 foot discrepency
exists between the model results and the observed tidal height at the
entrance to the Canal. Obviously, the fact that a phase lag of
approximately 2.5 hours between the two Bays contributes to this
discrepency. .- These features should of course be simulated 1in a

more sophisticated model.

In gpite of the many assumptions involved, the one layer model
seems quite representative of the physical situation observed in
Massachusetts Bay as was seen from the results presented in Section
3.1,1. Comparison of the analytical results with tide data especially
demonstrates the predictability of the model with a fully open
channel between X and X, Although the surface profile given by the
four increment channel in Figure 3-D better satisfies the imposed
boundary conditions than that given by the one increment situation in
Figure 3-B, the goodness of one variation over the other, when com—
pared to field information, is difficult to assess. The tidal velocities
given by the model are less reliable than the surface elevations but
- may produce an overview of the current field that can be expected in
the Bay. Thus, keeping the desired simplicity of the model ir mind,
we conclude that results of the one layer model, with just one opening

considered in its entirety, gives a resonable description of the tidal

motion in Massachusetts Bay.
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CHAPTER IV
RESULTS OF THE TWO LAYER MODEL

The two layer analytical model, as mentioned previously, was
developed in response to the pﬁysical characteristics encountered in
Massachusetts Bay during the spring, summer, and fall. Oceanographic
observations since 1925 at the Boston Lightship, as reported by the
U. S. Department of the Interior (1959), show that the thermocline
generally forms in May and overturns in September and October. Thus,
stratification due to the variation in both temperature and salinity
prevails for approximately six months out of the year.

Although the thermocline is quite variable in depth, historical
data taken at Boston Lightship locates the average depth of the
interface 30 feet below the surface. Water depth at the Lightship,
which is approximately six nautical miles east of the entrance to
Boston Harbor, is 100 feet at mean low water. (It should be noted
that the Lightship, not to be confused with Bosteon Light, was moved
to a new location on July 1, 1973. All references to Boston Lightship
in this report are for its previous position of 42°20.4' N, 70°45.5' W).

4.1 Computational Consideratiomns

4.1.1 Results of the Two Laver Model

The stratified case was developed as a simple model with the
capability of determining velocities and elevations in both layers.
Derivation of the governing equations for the stratified model

parallels the theoretical development of the cne layer model such
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that the solutions for all velocities and the interface elevation nl
are specified in terms of the surface elevation Ny

The general solution for Nos given by Equation (2.30}, is a
function of the constants An and Bn and it can be shown that Ao
essentially géverns the surface profile while the motion of the inter-
face 15 governed essentially hy BO.By setting B0 equal to zero, in

Equation (2.30),T12 takes the form:

o
n, = Ao cos m y + Z An cos kn % cosh noy
1 n=1 1
N-1 ©
+ E B cos k xXxcoshm y+ I B cos k xcoshm y
n n n n s} n
n=1 2 n=N 2

(4.1)
and it can be shown by calculation that the summation of the terms
containing Bn for n > 0 is small compared to the summation of the
terms containing An's.

The solution for Bo equal to zero shows that n, closely
approximates the solution for n in the one layer model. Thus, we
ldentify the constant Ao as the one essentially governing the surface
elevations whereas the value of the constant BO is reflected in the
interface elevations,

The procedure for sclving for the comstants AO and BO contained
in the general solution for n,, Equation (2.30), is discussed in
Chapter Il and is similar to the method for determining Ao in the

one layer model. For the stratified case, both a surface amplitude

relative to mean sea level (MSL) and an interfacial amplitude
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relative to the mean interfacial level must be specified at some point
within the Bay. Alternatively, current velocities could be specified
in each of the two layers although, as explained in the preceeding
chapter, this data is often difficult to interpret from current
records., With information on the surface and interface the two
constants can be determined either through an 1terative process or
directly by rearrangement of the equations given representatively

by (2.35A) and (2.35B).

Oceanographic data in the form of vertical prefiles of
temperature and salinity in Massachusetts Bay have been taken by
various agencies and institutions, Unfortunately it is difficult
to determine, with any degree of accuracy, the amplitude of the
interface for a given location as the variation of temperature
representing the thermocline is not discrete but varies rapidly in
the vertical direction over a distance of as much as ten feet. As
a result, unlike the information on the surface profile which is
fairly well documented, the amplitude of the interface was specified
arbitrarily at a certain location to allow for the determination of
the two constants in Equation (2.30). Choosing the coordinates of
x = 10.0 NM, v = 5.0 NM, the surface elevation, from the resuits of
the one layer model, has been found to be of the order 4.5 feet.

It is reasonable to assume that, for an h2 of 20 feet, the amplitude
of the interface is approximately 5/6 the amplitude of the surface

wave, Consequently, nl was chosen as 3.5 feet at this location.
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With this information, the constants Ao and B0 can be computed
for the two layer model. Through the solutions for the velocities
and elevations given in the theoretical development, the surface
and interfacial profiles and currents can be computea for Massachusetts
Bay. The geometry of the stratified model is the same as that
assumed for the one layer case where x, = 0.0 ¥M and x, = 41.0 NM.
Results of the one layer model indicate that the fully open channel
with no constrictions gave a fair representation of the physical
situation and consequently only this configuration will be considered
for the two layer model.

The solutions for the amplitude and velocities, as in the one
layer model, contain summations for n = 1 to =, Although convergence
in this model was obtained by n = 50, the large number of computations
required that the equations be solved on the IBM 370/155 computer
located at M,I.T. A listing of this computer program, written in
Fortran, can be found in Appendix A.

Results of the two layer analytical model can now be determined
for a particular situation similar to that frequently found in
Massachusetts Bay. Taken from actual field observations, the
following parameters were first specified as input into the model.

hl = 100 feet, h, = 20 feet, Py = 1.02558 g/cm3, Py = 1.02250 g/cm3.

2
By additionally setting n, = 3.5 feet and n, = 4,5 feet at x = 10.0 NM,
y = 5.0 NM, the interface and surface amplitudes can be computed by
respectively Equations (2.23) and (2.30) with the resulting profiles

shown in Figure 4-A. It can be seen that the surface profile is quite
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similar to that given by the one layer model (Figure 3-B) with the
same geometrical configuration. Although the surface amplitude of
4.5 feet is specified at a slightly different location than in the
one layer situation, the surface slope compares favorably with the
model results aﬁd observational data previously presented. The
surface profiles were smoothed slightly as small perturbations
occurring in the contour lines were neglectéd.

From Figure 4-A it can be seen that the interfacial profile
predicted for the two layer model exhibits some rather interesting
and unusual results. Measured relative to the mean interfacial

level, h this particular model shows the interface oscillating

1’
vertically from - 2.0 feet to + 15.0 feet with a wave length of the

order 11.0 nautical miles. Since the solution for n., is periodic,

1
the model resultingly predicts a standing wave which, at high tide,
rigses to within 10 feet of the free surface,

Velocities for this particular case are shown in Figure 4-B.
The velocities are specified in terms of x and y derivatives of N,
and consequently the surface profile determines the magnitude and
direction of both Ul and UZ' By the nature of the equations for u,
and Vo, given respectively by Equations (2.22A) and (2.22B), the
currents predicted in the upper layer are always perpendicular to the
lines of constant surface amplitude with the velocity a function of
the existing surface slope. The currents in the lower layer are
specified as a function of both the first and third derivatives of

Ny It will be noticed that the magnitude of U, is greater than that

1
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of U2 at some positions in the model; at other locations the reverse
is true. Of greater importance is the prediction that the directions
of the currents in the two layers do not coincide,

The two layer analytical model was changed slightly and the
amplitudes and velocities were computed for a second set of cir-
cumstances. The geometrical configuration remained the same; however,
the difference in density between the two layers was increased
slightly from the 0.3 per cent, given in the first set of results, to
0.5 per cent. The new densities were specified as Py = 1.0050 g/cm3
and ¢, = 1,000 g/cm3. In addition, the depth of the interface was
increased by 20 feet such that hl = 80.0 feet and h2 = 40.0 feet. The
surface and the interfacial amplitudes were again specified at x =

10.0 NM, y = 5.0 NM under the same set of assumptions as discussed

earlier. Thus, again by setting n, = 4.5 feet it 1s reasonable to
h

.
h1+h2
these conditions the stratified model was again solved for the area

assume the amplitude of the interface as ( )n2 or 3.0 feet, For
of Massachusetts Bay.

The surface and interfacial profiles for this model are shown
in Figure 4-C. Obviously, much more activity exists here than in
the previously discussed case. The surface profile, in this extreme
case, reflects the influence of the interfacial waves. Close examina-
tion of the results of Figure 4-C as compared with Figure 3-B reveal
the fact that the surface 1s lower, relatively, over an interfacial
crest and higher over an interfacial trough. This serves to demon-

strate the dependence of n, om n, as discussed in the theoretical
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development of the twe layer model. The interface exhibits some
exceedingly large waves with a height of the order 30 feet and a
wave length of approximately 24.0 NM,

The velocities in the upper and lower layer for this particular
situation are given in Figure 4-D. Of primary importance in the
results is the fact that, with large vertical displacements of the
interface, currents in the two layers are quite wvariable and, at
some positions, almost opposing each other. The currents in the
vicinity of the boundaries are also unusual by the fact that, at
some locations, on the ebbing (outgoing) tide, which is shown, they
flow towards the walls and away from the channel opening in the
upper layer. Resultingly, the interface and surface profiles and
speed and direction of the currents are extremely variable and
physically difficult to determine since the various parameters appear
to be quite sensitive to position. This is in qualitative agreement
with available field cbservations to be presented later in this
chapter, which indicate that, to a degree, this condition persists.

4.1.2 Model Sensitivity

The two layer analytical model was computed for a number of
geometrical configurations and physical conditions in an attempt to
check the sensitivity of the sclution. As seen by the amplitudes and
velocities predicted for the two cases just discussed, the model is
very sensitive to changes in the interfacial depth and /or changes
in density. Consequently, an attempt to quantify the importance of
these and other variables has been completed through a sensitivity

analysis. The results are presented herein.
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The twc constants Ao and B0 that were required in the general
solution for N, shall be first discussed. As pointed out in Section
4.1.1, the constants are generally determined through the applica-
tion of field data prior to their introduction into Equation (2.30).
Also noted was the fact that the value of ﬁo primarily governs the
surface profile, nz, while the value of BO is the determining factor
in the shape of the interface, n;. in checking the sensitivity of
the two, it was found that by varying the constant AO the surface
and interface reacted by the same order of magnitude while a small
change in the constant Bo brought almost no change to the surface
profile although creating interfacial disturbances of significantly
different magnitudes. Thus, it can be concluded that, in determining
the value of BO, the initial conditions specified for the interface
must be chosen carefully and as precisely as possible. The following
clearly demonstrates the situation and the sensitivity of the
interface to Bo:

= 1.0050 g/cm3

Constant Conditions: hl = 80.0 ft. P1
h, = 40.0 ft, Py = 1.0000 g/cm3
Specified Elevations Resulting Maximum Interfacial
@ x = 10.0 NM, vy = 5.0 NM Constants Wave Height
nl(ft.) ﬂg(ft-) Ao B0 Hl(ft.)
3.0 4.5 4.684 -0.00790 50
3.5 4.5 4.685 ~-0,00491 28
4,32 4,5 4,670 0.0 7

Table 4-1: Sensitivity of B to the Choice of Interfacial Amplitude

—65-



As a consequence of the large interfacial variations shown in
the results of the two layer medel and in view of the above informa-
tion concerning the constants AO and Bo' it is apparent that the
model is very sensitive to the location at which ny is imitially
specified. In the two cases presented for the two layer model,
both the surface and interfacial amplitude were specified at the
coordinates x = 10.0 NM, v = 5.0 NM. From Figure 4-A and Figure 4-C
it can be seen that this position is approximately mid-way between
the trough and the crest of the interfacial standing wave. Obviousiy
then small changes in the interfacial wave amplitude at this point
will force the solution for nl to predict relatively large vertical
displacements in the areas of the troughs and crests. Clearly, the
solution to this problem is to first determine, for a particular set
of conditions, the locations of the 'highs' and the 'lows' of the
interfacial waves. This information can be used in the choice of
location where the value of ”1 and n, should be measured in order to
give the best possible resolution such that the model will give
reasonable results and an interfacial wave the least sensitive to
errors in the measurements.

Variation of the geometrical configuration, especially that
of the length scale, was an additional criteria which could produce
changes in the results. The average length, X of the Bay was
agssumed to be of the order 59.0 WM and all the results ﬁresented were
computed on this basis. To assure that the solution was not sen-

sitive or that mo unusual conditions existed in the particular
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configuration, the two layer analytical model was run for a number
of different lengths. The most important aspect of this analysis
was that the results generally indicated that the amplitude and
length would be of the same order of magnitude and that, for all
practical purposes, a small change in the value of X would produce
no unusual results.

Results of density variations have already been indicated by
the two cases discussed in Section 4.1.1. The sensitivity of the
golution to changes in density are guite pronounced again affecting
primarily the profile of the interface. As previously mentioned,
the average difference in density found in Massachusetts Bay between
the upper and lower layer during stratification is of the order 0.3
per cent. That condition was presented by Figures 4-A and 4-B with
the second set of results, Figures 4-C and 4-D, showing 4p of the
extreme value of 0.5 per cent. Differences between the two sets
of results cannot be attributed only to the change in Ap since some
influence is possible due to the variation of hl and h2.

The last set of parameters which merit discussion are the values
of h, and h,. With h, representing the thickness of the lower layer

1 2 1

and h, the thickness of the upper layer, the sum of the two was

2
always equal to 120 feet, the average depth of Massachusetts Bay.

Sensitivity of the solution to variations in h1 and h2 was checked

in a number of cases with the result that by increasing the value of
hl the interfacial amplitude decreased as did the Interfacial wave

length.
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From (2.20B) it is clear that the influence of changing Ap

and the relative magnitude ot hl and h2 are related, in that they

combine to give the wave number m

2

Te illustrate the variations with

the various parameters, the velocities at selected points are

presented in Figure 4-E.

o

U, (Upper Layer)

0.0 0,25 0.5
i | J

Velocity Scale (Ft./sec.)Ul(Lower Layer)

x and y(NM)
>
\Nk\ coordinates
X = 10;6“
y = 5.0

¥
— e S % = 9,0
y = 2.0
':555\ >SN R N x = 13.0
¥ 2.0
| | | > u
| , | I
h,=20.0 Ft. h,=30.0 Ft. h,=40.0 Ft.
h,=100.0 Ft. h,=90.0 Ft. h,~80.0 Ft.

Values of other parameters.

At x=10.0, y=5.0
nl=3.5 Ft., n2=4.5 Ft.

Figure 4-E:
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Most of the discussion cencerning the sensitigity of the medel
to various parameters has been discussed in terms of the changes
occurring in the interface. However, the surface profile and vel-
ocities in the two layers also exhibit variation as shown in Figure
4-E, although relatively minor, when changes occur in the geometry
or in the specified conditions., By far though the most significant
example of sensitivity in the model is exhibited by the interface
and its reaction to variation of the imput parameters,

4,2 Available Data for Comparison

Results of the two layer anmalytical model can be compared with
available field observations for the Massachusetts Bay area. The
field data consists mainly of information on the gurface profile,
temporal and spatial measurements of the temperature and salinity
structure, and current drogue measurements. A large number of
oceanographic observations have been collected in the Bay by various
agencies and instituticns during the summer months and the data
presented here gives a good overview of the condition present during
stratification.

Data compiled in the Nationgl Ocean Survey Tide Tables (1873)
is used for a comparison with the surface amplitude predicted by
the two layer model. This information is taken from observational
records at various locations around the Bay perimeter as shown in
Figure 3-A.

The wvertical structure of temperature over the water column

has been one of the most widely studied oceanographic phenomena for
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many decades. Temperature observations at Boston Lightship have been
taken on a daily basis since 1925 and have afforded many insights
into the therﬁal conditions in Massachusetts Bay. Thus far, the level
of the interface has been generally comsidered a function of the
thermocline although this is not strictly true since the variation
of salinity also affects the density of sea water. Consequently,
with the advent of the newer oceanographic instrumentation, in par-
ticular the CTD {(Conductivity, Temperature, and Depth), salinity
along with temperature can be determined allowing the calculation of
a true density profile for each station recorded. Although the
thermocline and density gradient normally coincide, neither is discrete
but occur as a gradual variation over relatively large vertical dis-
tances. Hence, it is difficult to determine, with any precision,
the exact depth of the interface and to detect small perturbations
that may occur at this level.

As an example of thils problem, a sample C.T.D. cast, taken
in the vieinity of Boston Lightship, is shown in Figure 4-F. For-
tunately though the model predicts relatively large vertical variations

of n, and consequently the data presented herein will attewpt Lo

1
verify, qualitatively, some of the conditioms that may exist.
Oceanographic observations from a buoy located in Stellwagen
Basin, approximately 5.5 NM west of Stellwagen Bank, were taken by
Halpern in July and August, 1966. Vertical observations of temperature

were collected at the position 42°16.5' N, 70°24.5' W for a total of

5 days with the result that the temporal variation of the thermocline
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Figure 4-F: C.T.D. Cast Taken in Massachusetts Bay
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was well documented at this point of space for a period of time.
Halpern reported his observations in a paper on the short-period
internal waves in Massachusetts Bay (Halpern, 1971a) and again

in a discussion of semidurnal internal tides in Massachusetts Bay
(Halpern, 1971b). Concerned primarily with the vertical movement of
the thermocline, no information on salinity was obtained and con-
sequently temperature measurements will serve as the primary indicator
for the degree and depth of stratification.

Halpern's data locates the average depth of the thermocline
approximately 40 feet below the surface with a semidurnal variation
of temperature at this depth of approximately 11°F. The most
interesting information concerns the vertical displacement of the
thermocline, or for our purpose, the interface, with the result that
the amplitude of the interfacial wave is of the order 15 feet. Clearly,
this is of great interest since the model predicts a periodic motion
of a similar magnitude. Although the motion of the interface, from
Halpern's observations, is not a purely sinusoidal function, the
possibility exists that this ijs the result of non-linear effects
associated with water spilling over Stellwagen Bank on the flooding
tide which are also responsible for generation of short pericd
internal waves. However, for our purposes, the information serves
to qualitatively confirm some of the predictions given by the two
layer model.

A second set of measurements, spatial in nature, are presented

to further verify the motion of the interface. In particular,
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oceanographic observations, using the C.T.D., have been taken by M.I.T.
under the Massachusetts Bay Sea Grant Program. This data has been
collected aboard the research vessels R.R. Shrock and Walter E, Phipps
allowing a quick on-board determination of the temperature and salinity
structure at each station. Almost 20 of these C.T.D, profiles were
taken in the Bay on a chemistry cruise conducted on July 25 and 26,
1973, Resultingly, the depth of the interface was determined at a
number of locations approximately 5.0 NM apart., The observations used
for comparison, although not entirely synoptic, were taken as close to
the time predicted for low tide as possible in order to reduce the
effects of periodic motion. The 45°F isotherm was used for the depth
of the thermocline since it was the temperature at which the largest
density gradient occurred. Using this temperature as the indicator for

the interface, the results of three of these C.T,D., stations are

presented.
C.T.D. Statioms - July 26, 1973
Low Tide (NOS Tide Tables) 1432 EDT
Station Time  Position x &y oM Water Depth (Ft.) of
Number (EDT) Lat. & Long., Coordinates Depth (Ft.) 45°F Isotherm
14 1300 42°05.8' N x = 32.0 135 27
70°31.3' W vy = 6.0
15 1340 42°09.8" N x = 28.0 146 43
70°31.2' W y = 8.0
16 1430 42°14.0" N x = 22.0 103 26
70°37.0' W y= 6.0

Table 4-2: Observed Spatial Variation in Depth
of Interface below the Surface
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These stations, located along the western side of Massachusetts
Bay close to the 120 foot contour, peoint to the fact that vertical
variations of the order 17.0 feet occur in the intzrface over a
horizontal distance of approximately 5.0 NM. Obviously this in-
formation supports the fact that relatively large interfacial waves
can be found in the Bay as predicted by the two layer model and
shown in Figure 4-~A and 4-C.

Information on the currents in Massachusetts Bay, occurring
during stratification, has also been collected by M.I.T. These
studies were generally completed through the use of drogues er
drifters that emploved a large subsurface vane set at a preselected
depth and suspended from a relatively small surface fleat. During
stratification, the depth of the vanes was ncrmally determined as a
function of the level of the interface with one set of vanes placed
in the upper layer and a second set in the lower layer. By following
the path of the surface floats the speed and direction of the currents
could be computed for the two depths. With this information some
idea of the velocity profile could be determined as well as the
variability in speed and direction of the twec layers.

One such current study was conducted on July 27, 1972 aboard
the M.1.T. research vessel R.R. Shrock. Through the C,T.D., casts
taken on this cruise, one of which is shown in Figure 4-F, the depth
of the thermocline was estimated at approximately 20.0 feet. Average
densities for the two layers were computed from the temperature and
salinity information with the result that Py = 1.02558 g/cm3 and

Py x 1.02250 g/cm;. It should be noted that thege were the conditions

7



specified in the two layer model shown by Figures 4-~A and 4-B.
Results of this current drogue study are given in Figure 4-G and

it can be seen that the drogue depths were selected so as to be
representative of the conditions existing in the two layers. Shown
are the directions and velocities of the currents for a seven hour
duration taken during an ebbing tide from high to low water. Tt

can be seen that for approximately half of-the duration the drogues
in the upper layer proceeded southwesterly while those in layer one
moved more in a southerly direction and at a slower velocity.

During this time the Bay was considered to be in a steady state
condition since a 5 to 10 knot wind had been blowing from the north-
east for the past 18 hours. However, at approximately the mid-point
of the observations, the wind shifted to the southeast 5 to 10 knots
and continued in that direction for the remainder of the day. At
this time it can be seen that the drogues changed direction such that
the surface layer reacted directly to the wind stress. The lower
layer apparently also reacted by moving in a northeasterly direction
which is to be expected if the interface was forced down as a result
of the thickness of the surface layer increasing due to the wind
setup. It is the steady state condition for which model predictions
of the currents in the two layers can be made. Consequently it is the
first half of the drogue observations that is of interest for com-
parison with the mcdel results as will be discussed in the next
section. However, the results point out the great importance of

wind driven currents. The last field data to be considered will be
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that taken during a second drogue study conducted for M.I.T. on

July 31, 1972. Although the C.T.D. was inoperable this particular
day, it can be assumed that approximately the same density conditions
and interfacial depth exist as were recorded from the study completed
on July 27. Again the Bay can be assumed in steady state since the
wind, for the past 18 hours, was generally from the south at 5 to

10 knots. Only a slight wind shift to the southwest was observed
during the drogue observations and this was considered to have a
negligible effect on the currents.

Results of this study are shown in Figure 4~H where the ob-
servations were taken from low to high tide during the flooding
situation. Although the currents in the lower layer maintained a
relatively constant speed and direction, the upper layer revealed a
slow change in direction swinging from almost east to around to
south~southwest. The important consideration in these observations
is that, for most of the time, there is an angular difference between
the currents in the two layers. In addition, both drogue studies
show that, it is indeed observed that, the currents in the upper
layer can proceed in a direction quite different from that normally
expected during either a flooding or ebbing tide if only a one layer
model is considered.

4.3 Discussion of the Model Results

The need to include the effect of a two layer model has been
seen by the conditions existing in Massachusetts Bay during the

summer months. The results of this model have been shown and can now
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be compared with field observations of both currents and elevations.
However, the comparisons will generally show agreement only in a
qualitative sense since the interface separating the two layers in

the Bay is rarely well defined aﬁd generally can only be determined
within certain limits. This uncertainty is reflected in our arbitrary
choice of specifying the interfacial amplitude at x = 10 NM, y =

5 NM. Consequently the comparisons will be qualitative in nature

but will serve to demonstrate the ability of the twoe layer model

to explain some of the conditions that have been observed in
Massachusetts Bay.

The results of the surface and interfacial profiles will be
compared first with the available field data. Similar to the profile
for n given in the one layer model for a fully open channel, Figure
3-B, the surface profile shown in Figure 4-A compares quite closely
with the observed tidal amplitudes around the Bay. The surface
profile given in Figure 4-C does not, in the details, compare as well
with the results of the one layer model presented in Figure 3-3.
Thus, the large interfacial waves result in a significant variation
in the surface contours. This large difference in surface contours
is, however, not of great significance when considering the fact that
the contours are drawn for intervals of 0.1 feet. Thus, in terms of
actual surface elevation, the predictions are not drastically different
between the one and two layver models.

The interfacial profile, given by the solution for ny exhibits

the most dramatic and somewhat unexpected characterictics. The

-79~



results shown in Figures 4-A and 4-B are the amplitude and velocities
predicted for the same densities and interfacial depth as observed
in Massachusetts Bay during the current drogue study of July 27, 1972,
Resultingly the predicted interfacial profile is considered to be
fairly representative of the physical situation that could exist.
However, due to instrument problems, only a limited number of C.T.D.
casts were taken during the drogue study. Consequently, the model
predictions will be compared with vertical observations taken by
Halpern in Stellwagen Basin and by the M.I.T. C.T.D. stations of
July, 1973.

The total vertical variation of the thermocline, as observed
by Halperﬁ, was of the order of 30 feet giving an interfacial
amplitude of approximately 15 feet. Comparing this wvalue with
the results in Figure 4-A shows that the order of magnitude is
certainly reasonable since the model also predicts an ”1 of 15 feet,
In fact, comsidering the sengitivity of the model to changes in h2
and without further knowledge of the conditions surrounding Halpern's

data, the prediction for 7, can actually be considered reasonably

1
good.

The 1information obtained from the C.T.D. casts, taken by
M.I.T. in July, 1973, verify the fact that interfacial waves exist
in Massachusetts Bay. This data was synoptic in the semse that it
was taken as close to low tide as possible when hopefully slack con-
ditions existed. Unfortumately, the actual wave length, Ll’ of the

interface could not be computed from the limited field data taken

although the model predicts an L1 of the order 11.0 NM as seen in

=80-



Figure 4-A. It should be mentioned that a similar condition has

been noted and discussed by other investigators under the subject of
internal waves. It is obviocus that the interfacial waves, qualitative-
ly, predicted by the two layer ﬁodel, are evidenced both by Halpern's
data and M.I.T.'s C.T.D. casts.

Currents predicted in the two layers can be compared directly
with current drogue observations shown in Figures 4-G and 4-H. As
previously mentioned, the first set of results presented tor the
stratified model are determined for the same conditions as observed
in the field during the drogue studies. These results are presented
in expanded form in Figure 4-1 and show the variability that can
be expected in the currents along the boundary in Massachusetts Bay.
It is important to note that the two drogue studlies were also
completed close to the Boston Lightship and the western edge of the
Bay in a location, as shown by the predicted results in Figure 4-T,
where currents vary drastically with location and are predicted to
flow shoreward during an ebbing tide and seaward during the flood
in the upper layer. Although the model results do not predict the
exact direction given by the drogues, due probably to the effects of
Boston Harbor and the surrounding geometry in addition to the
neglect of Coriolis force, it is obvious that the model shows that
a large difference in current directions is possible during stratifi-
cation in this area., This is in qualitative agreement with observa-

tions as shown in Figures 4-G and 4-H.
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In addition to showing an angular difference in the current
direction in the two layers, it demonstrates the sensitivity of the
observations to location, especially when close to the boundary.

From the results of the two layer.model shown in Figure 4-1, an angular
change of up to 180° in the current direction in the upper layer can

be cbserved over a distance of only a few miles in the Bay
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CHAPTER V
CONCLUDING REMARKS

Two analytical models have been derived for a geometrical
configuration similar to that of Massachusetts Bay. A simplistic
approach was taken in the theoretical development of the models by depth
averaging the linear long wave equations in two dimensions. By neglect-
ing Coriolis force, bottom friction, and wind stress the models were
able to represent the tidal circulation for both the uniformly well
mixed and stratified case and to explain qualitatively some of the
conditions encountered during field observations. Results of the two
models were presented for a number of geometrical variations and
physical conditions and compared with various types of field observations
for verification of the model predictions.

The one layer model, representing the situation generally found
during the winter, was discussed first a;d compared with tidal data and
current observations. Comparison of the results of the model with tide
gauge observations demonstrated the ability of the model to predict,
quite closely, the surface_profile for Massachusetts Bay. Velocities
of the tidal currents also compared favorably with field data in a
qualitative sense, and generally were the same order of magnitude:
Current direction was the most difficult to verify as current meter

records were often quite variable in this respect showing the effects

of localized conditions.
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Results of the two layer analytical model were considered more
revealing in the sense that insight was gained into the conditions
present during stratificatiom. These results were compared with various
types of field obgervations in an attempt to verify qualitatively the
significance of using a two layer model to predict interface and surface
profiles and currents. Reasonably good agreement was found when
comparing the predicted surface profile with the cbserved tidal
amplitudes. Differences between the predicted tidal amplitudes of the
one layer model are minor and the differences between the two models
and the observed tidal amplitudes can be attributed to the effects of
Boston Harbor, the Cape Cod Canal, and the sloping bottom of the lower
Bay.

Comparisons of the interfacial profile and current velocities
predicted by the model with available field data are generally more
gualitative since the physical conditions, especially the depth of the
interface as well as the amplitude of the interfacial wave, that govern
the solution cannot be determined very accurately. However, observa-
tions by both Halpern and M.I.T. verify the existance of interfacial
waves and show the amplitude of the same order of magnitude as that
predicted by the two layer model.

Currents predicted by the model were the most difficult to verify
by fiéld measurements since the physical observations clearly exhibit
a high degree of variability over the tidal cycle. The drogue studies
were apparently subject to variations due to relatively small changes

in wind direction and, in the area surveyed, the chservations are
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probably affected by the flux in and out of Boston Harbor. In view

of these existing conditions only a qualitative comparison can be made.
This comparison however shows that the velocities predicted by the
model are within the order of magnitude of those measured in Massa-
chusetts Bay, also the observed curlosity of having shoreward current
in the upper layer during an ebbing tide is made plausible by a similar
prediction by the two layer model.

The two layer analytical model has clearly demonstrated its ability
to explain qualitatively observed phenomena as well as giving an insight
into conditions that are not readily apparent. Although it represents
a highly simplified approach to a rather complex physical problem, it
produces useful information on Massachusetts Bay and can assist the
coastal engineer in solving problems related to the ccean environment.

Obviously, the development of more sophisticated one and two layer
models would be advantageous. It was shown in the theoretical
development that Coriolis force exerts some influence and from comparing
model results with field data it can be seen that including Boston
Harbor, the Cape Cod Canal, and introducing a wind stress would more
realistically describe the physicgl conditions. However, the cobjective
was to develop a simple analytical model of Massachusetts Bay and
thereby demonstrate that if current predictions are desired one should
indeed have a two layer model. This goal has been achjeved in the
qualitative agreement of predicted and observed phenomena in

Massachusetts Bay.
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APPENDIX A
LISTING OF THE PROGRAM USED FOR THE

COMPUTATIONS PRESENTED IN CHAPTER IV

The program used for the computation of the solution for the
two layer model is presented along with a sample of the output. The

"comment cards" should make the program self-explainatory.
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